
graphkit-learn Documentation
Release 1.0.0

Linlin Jia

Apr 11, 2020





Contents

1 Requirements 3

2 How to use? 5

3 List of graph kernels 7

4 Computation optimization methods 9

5 Issues 11

6 Results 13

7 References 15

8 Authors 17

9 Citation 19

10 Acknowledgments 21

11 Documentation 23

12 Indices and tables 41

Python Module Index 43

Index 45

i



ii



graphkit-learn Documentation, Release 1.0.0

A python package for graph kernels.

Contents 1

https://travis-ci.org/jajupmochi/graphkit-learn
https://codecov.io/gh/jajupmochi/graphkit-learn
https://graphkit-learn.readthedocs.io/en/master/?badge=master
https://badge.fury.io/py/graphkit-learn


graphkit-learn Documentation, Release 1.0.0

2 Contents



CHAPTER 1

Requirements

• python==3.6.5

• numpy==1.15.2

• scipy==1.1.0

• matplotlib==3.0.0

• networkx==2.2

• scikit-learn==0.20.0

• tabulate==0.8.2

• tqdm==4.26.0

• control==0.8.0 (for generalized random walk kernels only)

• slycot==0.3.3 (for generalized random walk kernels only, which requires a fortran compiler, gfortran for exam-
ple)

3



graphkit-learn Documentation, Release 1.0.0

4 Chapter 1. Requirements



CHAPTER 2

How to use?

Simply clone this repository and voilà! Then check ‘‘notebooks‘ <https://github.com/jajupmochi/graphkit-learn/tree/
master/notebooks>‘_ directory for demos:

• ‘‘notebooks‘ <https://github.com/jajupmochi/graphkit-learn/tree/master/notebooks>‘_ directory includes test
codes of graph kernels based on linear patterns;

• ‘‘notebooks/tests‘ <https://github.com/jajupmochi/graphkit-learn/tree/master/notebooks/tests>‘_ directory in-
cludes codes that test some libraries and functions;

• ‘‘notebooks/utils‘ <https://github.com/jajupmochi/graphkit-learn/tree/master/notebooks/utils>‘_ directory in-
cludes some useful tools, such as a Gram matrix checker and a function to get properties of datasets;

• ‘‘notebooks/else‘ <https://github.com/jajupmochi/graphkit-learn/tree/master/notebooks/else>‘_ directory in-
cludes other codes that we used for experiments.

5

https://github.com/jajupmochi/graphkit-learn/tree/master/notebooks
https://github.com/jajupmochi/graphkit-learn/tree/master/notebooks
https://github.com/jajupmochi/graphkit-learn/tree/master/notebooks
https://github.com/jajupmochi/graphkit-learn/tree/master/notebooks/tests
https://github.com/jajupmochi/graphkit-learn/tree/master/notebooks/utils
https://github.com/jajupmochi/graphkit-learn/tree/master/notebooks/else


graphkit-learn Documentation, Release 1.0.0

6 Chapter 2. How to use?



CHAPTER 3

List of graph kernels

• Based on walks

– The common walk kernel [1]

* Exponential

* Geometric

– The marginalized kenrel

* With tottering [2]

* Without tottering [7]

– The generalized random walk kernel [3]

* Sylvester equation

* Conjugate gradient

* Fixed-point iterations

* Spectral decomposition

• Based on paths

– The shortest path kernel [4]

– The structural shortest path kernel [5]

– The path kernel up to length h [6]

* The Tanimoto kernel

* The MinMax kernel

• Non-linear kernels

– The treelet kernel [10]

– Weisfeiler-Lehman kernel [11]

* Subtree

7



graphkit-learn Documentation, Release 1.0.0

8 Chapter 3. List of graph kernels



CHAPTER 4

Computation optimization methods

• Python’s multiprocessing.Pool module is applied to perform parallelization on the computations of all
kernels as well as the model selection.

• The Fast Computation of Shortest Path Kernel (FCSP) method [8] is implemented in the random walk
kernel, the shortest path kernel, as well as the structural shortest path kernel where FCSP is applied on both
vertex and edge kernels.

• The trie data structure [9] is employed in the path kernel up to length h to store paths in graphs.

9



graphkit-learn Documentation, Release 1.0.0

10 Chapter 4. Computation optimization methods



CHAPTER 5

Issues

• This library uses multiprocessing.Pool.imap_unordered function to do the parallelization, which
may not be able to run correctly under Windows system. For now, Windows users may need to comment the
parallel codes and uncomment the codes below them which run serially. We will consider adding a parameter
to control serial or parallel computations as needed.

• Some modules (such as Numpy, Scipy, sklearn) apply ‘‘OpenBLAS‘ <https://www.openblas.net/>‘_ to
perform parallel computation by default, which causes conflicts with other parallelization modules such as
multiprossing.Pool, highly increasing the computing time. By setting its thread to 1, OpenBLAS is
forced to use a single thread/CPU, thus avoids the conflicts. For now, this procedure has to be done manually.
Under Linux, type this command in terminal before running the code:

$ export OPENBLAS_NUM_THREADS=1

Or add export OPENBLAS_NUM_THREADS=1 at the end of your ~/.bashrc file, then run

$ source ~/.bashrc

to make this effective permanently.

11

https://www.openblas.net/


graphkit-learn Documentation, Release 1.0.0

12 Chapter 5. Issues



CHAPTER 6

Results

Check this paper for detailed description of graph kernels and experimental results:

Linlin Jia, Benoit Gaüzère, and Paul Honeine. Graph Kernels Based on Linear Patterns: Theoretical and Experi-
mental Comparisons. working paper or preprint, March 2019. URL https://hal-normandie-univ.archives-ouvertes.fr/
hal-02053946.

A comparison of performances of graph kernels on benchmark datasets can be found here.

13

https://hal-normandie-univ.archives-ouvertes.fr/hal-02053946
https://hal-normandie-univ.archives-ouvertes.fr/hal-02053946
https://graphkit-learn.readthedocs.io/en/master/experiments.html


graphkit-learn Documentation, Release 1.0.0

14 Chapter 6. Results



CHAPTER 7

References

[1] Thomas Gärtner, Peter Flach, and Stefan Wrobel. On graph kernels: Hardness results and efficient alternatives.
Learning Theory and Kernel Machines, pages 129–143, 2003.

[2] H. Kashima, K. Tsuda, and A. Inokuchi. Marginalized kernels between labeled graphs. In Proceedings of the 20th
International Conference on Machine Learning, Washington, DC, United States, 2003.

[3] Vishwanathan, S.V.N., Schraudolph, N.N., Kondor, R., Borgwardt, K.M., 2010. Graph kernels. Journal of Machine
Learning Research 11, 1201–1242.

[4] K. M. Borgwardt and H.-P. Kriegel. Shortest-path kernels on graphs. In Proceedings of the International Confer-
ence on Data Mining, pages 74-81, 2005.

[5] Liva Ralaivola, Sanjay J Swamidass, Hiroto Saigo, and Pierre Baldi. Graph kernels for chemical informatics.
Neural networks, 18(8):1093–1110, 2005.

[6] Suard F, Rakotomamonjy A, Bensrhair A. Kernel on Bag of Paths For Measuring Similarity of Shapes. InESANN
2007 Apr 25 (pp. 355-360).

[7] Mahé, P., Ueda, N., Akutsu, T., Perret, J.L., Vert, J.P., 2004. Extensions of marginalized graph kernels, in: Proc.
the twenty-first international conference on Machine learning, ACM. p. 70.

[8] Lifan Xu, Wei Wang, M Alvarez, John Cavazos, and Dongping Zhang. Parallelization of shortest path graph kernels
on multi-core cpus and gpus. Proceedings of the Programmability Issues for Heterogeneous Multicores (MultiProg),
Vienna, Austria, 2014.

[9] Edward Fredkin. Trie memory. Communications of the ACM, 3(9):490–499, 1960.

[10] Gaüzere, B., Brun, L., Villemin, D., 2012. Two new graphs kernels in chemoinformatics. Pattern Recognition
Letters 33, 2038–2047.

[11] Shervashidze, N., Schweitzer, P., Leeuwen, E.J.v., Mehlhorn, K., Borgwardt, K.M., 2011. Weisfeiler-lehman
graph kernels. Journal of Machine Learning Research 12, 2539–2561.

15



graphkit-learn Documentation, Release 1.0.0

16 Chapter 7. References



CHAPTER 8

Authors

• Linlin Jia, LITIS, INSA Rouen Normandie

• Benoit Gaüzère, LITIS, INSA Rouen Normandie

• Paul Honeine, LITIS, Université de Rouen Normandie

17

https://github.com/jajupmochi
http://pagesperso.litislab.fr/~bgauzere/#contact_en
http://honeine.fr/paul/Welcome.html


graphkit-learn Documentation, Release 1.0.0

18 Chapter 8. Authors



CHAPTER 9

Citation

Still waiting. . .

19



graphkit-learn Documentation, Release 1.0.0

20 Chapter 9. Citation



CHAPTER 10

Acknowledgments

This research was supported by CSC (China Scholarship Council) and the French national research agency (ANR)
under the grant APi (ANR-18-CE23-0014). The authors would like to thank the CRIANN (Le Centre Régional
Informatique et d’Applications Numériques de Normandie) for providing computational resources.

21



graphkit-learn Documentation, Release 1.0.0

22 Chapter 10. Acknowledgments



CHAPTER 11

Documentation

11.1 Modules

11.1.1 gklearn

gklearn

This package contains 4 sub packages :

• c_ext : binders to C++ code

• ged : allows to compute graph edit distance between networkX graphs

• kernels : computation of graph kernels, ie graph similarity measure compatible with SVM

• notebooks : examples of code using this library

• utils : Diverse computation on graphs

gklearn.kernels

gklearn - kernels module

gklearn.kernels.commonWalkKernel

@author: linlin

@references:

[1] Thomas Gärtner, Peter Flach, and Stefan Wrobel. On graph kernels: Hardness results and efficient
alternatives. Learning Theory and Kernel Machines, pages 129–143, 2003.

commonwalkkernel(*args, node_label=’atom’, edge_label=’bond_type’, weight=1, com-
pute_method=None, n_jobs=None, verbose=True)

Calculate common walk graph kernels between graphs.

23



graphkit-learn Documentation, Release 1.0.0

Gn [List of NetworkX graph] List of graphs between which the kernels are calculated.

G1, G2 [NetworkX graphs] Two graphs between which the kernel is calculated.

node_label [string] Node attribute used as symbolic label. The default node label is ‘atom’.

edge_label [string] Edge attribute used as symbolic label. The default edge label is ‘bond_type’.

weight: integer Weight coefficient of different lengths of walks, which represents beta in ‘exp’ method and
gamma in ‘geo’.

compute_method [string] Method used to compute walk kernel. The Following choices are available:

‘exp’: method based on exponential serials applied on the direct product graph, as shown in reference [1].
The time complexity is O(n^6) for graphs with n vertices.

‘geo’: method based on geometric serials applied on the direct product graph, as shown in reference [1].
The time complexity is O(n^6) for graphs with n vertices.

n_jobs [int] Number of jobs for parallelization.

Kmatrix [Numpy matrix] Kernel matrix, each element of which is a common walk kernel between 2 graphs.

find_all_walks(G, length)
Find all walks with a certain length in a graph. A recursive depth first search is applied.

G [NetworkX graphs] The graph in which walks are searched.

length [integer] The length of walks.

walk [list of list] List of walks retrieved, where each walk is represented by a list of nodes.

find_all_walks_until_length(G, length, node_label=’atom’, edge_label=’bond_type’, la-
beled=True)

Find all walks with a certain maximum length in a graph. A recursive depth first search is applied.

G [NetworkX graphs] The graph in which walks are searched.

length [integer] The maximum length of walks.

node_label [string] node attribute used as label. The default node label is atom.

edge_label [string] edge attribute used as label. The default edge label is bond_type.

labeled [boolean] Whether the graphs are labeled. The default is True.

walk [list] List of walks retrieved, where for unlabeled graphs, each walk is represented by a list of nodes;
while for labeled graphs, each walk is represented by a string consists of labels of nodes and edges on that
walk.

find_walks(G, source_node, length)
Find all walks with a certain length those start from a source node. A recursive depth first search is applied.

G [NetworkX graphs] The graph in which walks are searched.

source_node [integer] The number of the node from where all walks start.

length [integer] The length of walks.

walk [list of list] List of walks retrieved, where each walk is represented by a list of nodes.

wrapper_cw_exp(node_label, edge_label, beta, itr)

wrapper_cw_geo(node_label, edge_label, gama, itr)

24 Chapter 11. Documentation



graphkit-learn Documentation, Release 1.0.0

gklearn.kernels.marginalizedKernel

@author: linlin

@references:

[1] H. Kashima, K. Tsuda, and A. Inokuchi. Marginalized kernels between labeled graphs. In Proceedings
of the 20th International Conference on Machine Learning, Washington, DC, United States, 2003.

[2] Pierre Mahé, Nobuhisa Ueda, Tatsuya Akutsu, Jean-Luc Perret, and Jean-Philippe Vert. Extensions
of marginalized graph kernels. In Proceedings of the twenty-first international conference on Machine
learning, page 70. ACM, 2004.

marginalizedkernel(*args, node_label=’atom’, edge_label=’bond_type’, p_quit=0.5, n_iteration=20,
remove_totters=False, n_jobs=None, verbose=True)

Calculate marginalized graph kernels between graphs.

Gn [List of NetworkX graph] List of graphs between which the kernels are calculated.

G1, G2 [NetworkX graphs] Two graphs between which the kernel is calculated.

node_label [string] Node attribute used as symbolic label. The default node label is ‘atom’.

edge_label [string] Edge attribute used as symbolic label. The default edge label is ‘bond_type’.

p_quit [integer] The termination probability in the random walks generating step.

n_iteration [integer] Time of iterations to calculate R_inf.

remove_totters [boolean] Whether to remove totterings by method introduced in [2]. The default value is
False.

n_jobs [int] Number of jobs for parallelization.

Kmatrix [Numpy matrix] Kernel matrix, each element of which is the marginalized kernel between 2 praphs.

wrapper_marg_do(node_label, edge_label, p_quit, n_iteration, itr)

wrapper_untotter(Gn, node_label, edge_label, i)

gklearn.kernels.randomWalkKernel

@author: linlin

@references:

[1] S Vichy N Vishwanathan, Nicol N Schraudolph, Risi Kondor, and Karsten M Borgwardt. Graph
kernels. Journal of Machine Learning Research, 11(Apr):1201–1242, 2010.

computeVK(g1, g2, ds_attrs, node_kernels, node_label)
Compute vertex kernels between vertices of two graphs.

computeW(g1, g2, vk_dict, ds_attrs, edge_kernels, edge_label)
Compute weight matrix of the direct product graph.

filterGramMatrix(gmt, label_dict, label, directed)
Compute (the transpose of) the Gram matrix filtered by a label.

func_fp(x, p_times, lmda, w_times)

getLabels(Gn, node_label, edge_label, directed)
Get symbolic labels of a graph dataset, where vertex labels are dealt with by concatenating them to the edge
labels of adjacent edges.

11.1. Modules 25



graphkit-learn Documentation, Release 1.0.0

randomwalkkernel(*args, compute_method=None, weight=1, p=None, q=None,
edge_weight=None, node_kernels=None, edge_kernels=None, node_label=’atom’,
edge_label=’bond_type’, sub_kernel=None, n_jobs=None, verbose=True)

Calculate random walk graph kernels.

Gn [List of NetworkX graph] List of graphs between which the kernels are calculated.

G1, G2 [NetworkX graphs] Two graphs between which the kernel is calculated.

compute_method [string] Method used to compute kernel. The Following choices are available:

‘sylvester’ - Sylvester equation method.

‘conjugate’ - conjugate gradient method.

‘fp’ - fixed-point iterations.

‘spectral’ - spectral decomposition.

weight [float] A constant weight set for random walks of length h.

p [None] Initial probability distribution on the unlabeled direct product graph of two graphs. It is set to be
uniform over all vertices in the direct product graph.

q [None] Stopping probability distribution on the unlabeled direct product graph of two graphs. It is set to be
uniform over all vertices in the direct product graph.

edge_weight : float

Edge attribute name corresponding to the edge weight.

node_kernels: dict A dictionary of kernel functions for nodes, including 3 items: ‘symb’ for symbolic node
labels, ‘nsymb’ for non-symbolic node labels, ‘mix’ for both labels. The first 2 functions take two node
labels as parameters, and the ‘mix’ function takes 4 parameters, a symbolic and a non-symbolic label for
each the two nodes. Each label is in form of 2-D dimension array (n_samples, n_features). Each function
returns a number as the kernel value. Ignored when nodes are unlabeled. This argument is designated to
conjugate gradient method and fixed-point iterations.

edge_kernels: dict A dictionary of kernel functions for edges, including 3 items: ‘symb’ for symbolic edge
labels, ‘nsymb’ for non-symbolic edge labels, ‘mix’ for both labels. The first 2 functions take two edge
labels as parameters, and the ‘mix’ function takes 4 parameters, a symbolic and a non-symbolic label for
each the two edges. Each label is in form of 2-D dimension array (n_samples, n_features). Each function
returns a number as the kernel value. Ignored when edges are unlabeled. This argument is designated to
conjugate gradient method and fixed-point iterations.

node_label: string Node attribute used as label. The default node label is atom. This argument is designated
to conjugate gradient method and fixed-point iterations.

edge_label [string] Edge attribute used as label. The default edge label is bond_type. This argument is desig-
nated to conjugate gradient method and fixed-point iterations.

sub_kernel: string Method used to compute walk kernel. The Following choices are available: ‘exp’ : method
based on exponential serials. ‘geo’ : method based on geometric serials.

n_jobs: int Number of jobs for parallelization.

Kmatrix [Numpy matrix] Kernel matrix, each element of which is the path kernel up to d between 2 praphs.

wrapper_cg_labled_do(ds_attrs, node_kernels, node_label, edge_kernels, edge_label, lmda, itr)

wrapper_cg_unlabled_do(lmda, itr)

wrapper_fp_labled_do(ds_attrs, node_kernels, node_label, edge_kernels, edge_label, lmda, itr)

26 Chapter 11. Documentation



graphkit-learn Documentation, Release 1.0.0

wrapper_sd_do(weight, sub_kernel, itr)

wrapper_se_do(lmda, itr)

gklearn.kernels.spKernel

@author: linlin

@references:

[1] Borgwardt KM, Kriegel HP. Shortest-path kernels on graphs. InData Mining, Fifth IEEE International
Conference on 2005 Nov 27 (pp. 8-pp). IEEE.

spkernel(*args, node_label=’atom’, edge_weight=None, node_kernels=None, paral-
lel=’imap_unordered’, n_jobs=None, verbose=True)

Calculate shortest-path kernels between graphs.

Gn [List of NetworkX graph] List of graphs between which the kernels are calculated.

G1, G2 [NetworkX graphs] Two graphs between which the kernel is calculated.

node_label [string] Node attribute used as label. The default node label is atom.

edge_weight [string] Edge attribute name corresponding to the edge weight.

node_kernels [dict] A dictionary of kernel functions for nodes, including 3 items: ‘symb’ for symbolic node
labels, ‘nsymb’ for non-symbolic node labels, ‘mix’ for both labels. The first 2 functions take two node
labels as parameters, and the ‘mix’ function takes 4 parameters, a symbolic and a non-symbolic label for
each the two nodes. Each label is in form of 2-D dimension array (n_samples, n_features). Each function
returns an number as the kernel value. Ignored when nodes are unlabeled.

n_jobs [int] Number of jobs for parallelization.

Kmatrix [Numpy matrix] Kernel matrix, each element of which is the sp kernel between 2 praphs.

spkernel_do(g1, g2, ds_attrs, node_label, node_kernels)

wrapper_getSPGraph(weight, itr_item)

wrapper_sp_do(ds_attrs, node_label, node_kernels, itr)

gklearn.kernels.structuralspKernel

Created on Thu Sep 27 10:56:23 2018

@author: linlin

@references:

[1] Suard F, Rakotomamonjy A, Bensrhair A. Kernel on Bag of Paths For Measuring Similarity of Shapes.
InESANN 2007 Apr 25 (pp. 355-360).

getAllEdgeKernels(g1, g2, edge_kernels, edge_label, ds_attrs)

getAllNodeKernels(g1, g2, node_kernels, node_label, ds_attrs)

get_shortest_paths(G, weight, directed)
Get all shortest paths of a graph.

G [NetworkX graphs] The graphs whose paths are calculated.

weight [string/None] edge attribute used as weight to calculate the shortest path.

11.1. Modules 27



graphkit-learn Documentation, Release 1.0.0

directed: boolean Whether graph is directed.

sp [list of list] List of shortest paths of the graph, where each path is represented by a list of nodes.

get_sps_as_trie(G, weight, directed)
Get all shortest paths of a graph and insert them into a trie.

G [NetworkX graphs] The graphs whose paths are calculated.

weight [string/None] edge attribute used as weight to calculate the shortest path.

directed: boolean Whether graph is directed.

sp [list of list] List of shortest paths of the graph, where each path is represented by a list of nodes.

ssp_do_trie(g1, g2, trie1, trie2, ds_attrs, node_label, edge_label, node_kernels, edge_kernels)

structuralspkernel(*args, node_label=’atom’, edge_weight=None, edge_label=’bond_type’,
node_kernels=None, edge_kernels=None, compute_method=’naive’, paral-
lel=’imap_unordered’, n_jobs=None, verbose=True)

Calculate mean average structural shortest path kernels between graphs.

Gn [List of NetworkX graph] List of graphs between which the kernels are calculated.

G1, G2 [NetworkX graphs] Two graphs between which the kernel is calculated.

node_label [string] Node attribute used as label. The default node label is atom.

edge_weight [string] Edge attribute name corresponding to the edge weight. Applied for the computation of
the shortest paths.

edge_label [string] Edge attribute used as label. The default edge label is bond_type.

node_kernels [dict] A dictionary of kernel functions for nodes, including 3 items: ‘symb’ for symbolic node
labels, ‘nsymb’ for non-symbolic node labels, ‘mix’ for both labels. The first 2 functions take two node
labels as parameters, and the ‘mix’ function takes 4 parameters, a symbolic and a non-symbolic label for
each the two nodes. Each label is in form of 2-D dimension array (n_samples, n_features). Each function
returns a number as the kernel value. Ignored when nodes are unlabeled.

edge_kernels [dict] A dictionary of kernel functions for edges, including 3 items: ‘symb’ for symbolic edge
labels, ‘nsymb’ for non-symbolic edge labels, ‘mix’ for both labels. The first 2 functions take two edge
labels as parameters, and the ‘mix’ function takes 4 parameters, a symbolic and a non-symbolic label for
each the two edges. Each label is in form of 2-D dimension array (n_samples, n_features). Each function
returns a number as the kernel value. Ignored when edges are unlabeled.

compute_method [string] Computation method to store the shortest paths and compute the graph kernel. The
Following choices are available:

‘trie’: store paths as tries.

‘naive’: store paths to lists.

n_jobs [int] Number of jobs for parallelization.

Kmatrix [Numpy matrix] Kernel matrix, each element of which is the mean average structural shortest path
kernel between 2 praphs.

structuralspkernel_do(g1, g2, spl1, spl2, ds_attrs, node_label, edge_label, node_kernels,
edge_kernels)

traverseBothTriee(root, trie2, kernel, vk_dict, ek_dict, pcurrent=[])

traverseBothTriem(root, trie2, kernel, vk_dict, ek_dict, pcurrent=[])

28 Chapter 11. Documentation



graphkit-learn Documentation, Release 1.0.0

traverseBothTrieu(root, trie2, kernel, vk_dict, ek_dict, pcurrent=[])

traverseBothTriev(root, trie2, kernel, vk_dict, ek_dict, pcurrent=[])

traverseTrie2e(root, p1, kernel, vk_dict, ek_dict, pcurrent=[])

traverseTrie2m(root, p1, kernel, vk_dict, ek_dict, pcurrent=[])

traverseTrie2u(root, p1, kernel, vk_dict, ek_dict, pcurrent=[])

traverseTrie2v(root, p1, kernel, vk_dict, ek_dict, pcurrent=[])

wrapper_getSP_naive(weight, directed, itr_item)

wrapper_getSP_trie(weight, directed, itr_item)

wrapper_ssp_do(ds_attrs, node_label, edge_label, node_kernels, edge_kernels, itr)

wrapper_ssp_do_trie(ds_attrs, node_label, edge_label, node_kernels, edge_kernels, itr)

gklearn.kernels.treeletKernel

@author: linlin

@references:

[1] Gaüzère B, Brun L, Villemin D. Two new graphs kernels in chemoinformatics. Pattern Recognition
Letters. 2012 Nov 1;33(15):2038-47.

find_all_paths(G, length, is_directed)
Find all paths with a certain length in a graph. A recursive depth first search is applied.

G [NetworkX graphs] The graph in which paths are searched.

length [integer] The length of paths.

path [list of list] List of paths retrieved, where each path is represented by a list of nodes.

find_paths(G, source_node, length)
Find all paths with a certain length those start from a source node. A recursive depth first search is applied.

G [NetworkX graphs] The graph in which paths are searched.

source_node [integer] The number of the node from where all paths start.

length [integer] The length of paths.

path [list of list] List of paths retrieved, where each path is represented by a list of nodes.

get_canonkeys(G, node_label, edge_label, labeled, is_directed)
Generate canonical keys of all treelets in a graph.

G [NetworkX graphs] The graph in which keys are generated.

node_label [string] node attribute used as label. The default node label is atom.

edge_label [string] edge attribute used as label. The default edge label is bond_type.

labeled [boolean] Whether the graphs are labeled. The default is True.

canonkey/canonkey_l [dict] For unlabeled graphs, canonkey is a dictionary which records amount of every
tree pattern. For labeled graphs, canonkey_l is one which keeps track of amount of every treelet.

11.1. Modules 29



graphkit-learn Documentation, Release 1.0.0

treeletkernel(*args, sub_kernel, node_label=’atom’, edge_label=’bond_type’, paral-
lel=’imap_unordered’, n_jobs=None, verbose=True)

Calculate treelet graph kernels between graphs.

Gn [List of NetworkX graph] List of graphs between which the kernels are calculated.

G1, G2 [NetworkX graphs] Two graphs between which the kernel is calculated.

sub_kernel [function] The sub-kernel between 2 real number vectors. Each vector counts the numbers of
isomorphic treelets in a graph.

node_label [string] Node attribute used as label. The default node label is atom.

edge_label [string] Edge attribute used as label. The default edge label is bond_type.

parallel [string/None] Which paralleliztion method is applied to compute the kernel. The Following choices
are available:

‘imap_unordered’: use Python’s multiprocessing.Pool.imap_unordered method.

None: no parallelization is applied.

n_jobs [int] Number of jobs for parallelization. The default is to use all computational cores. This argument is
only valid when one of the parallelization method is applied.

Kmatrix [Numpy matrix] Kernel matrix, each element of which is the treelet kernel between 2 praphs.

wrapper_get_canonkeys(node_label, edge_label, labeled, is_directed, itr_item)

wrapper_treeletkernel_do(sub_kernel, itr)

gklearn.kernels.untilHPathKernel

@author: linlin

@references:

[1] Liva Ralaivola, Sanjay J Swamidass, Hiroto Saigo, and Pierre Baldi. Graph kernels for chemical
informatics. Neural networks, 18(8):1093–1110, 2005.

find_all_path_as_trie(G, length, ds_attrs, node_label=’atom’, edge_label=’bond_type’)

find_all_paths_until_length(G, length, ds_attrs, node_label=’atom’, edge_label=’bond_type’, to-
labelseqs=True)

Find all paths no longer than a certain maximum length in a graph. A recursive depth first search is applied.

G [NetworkX graphs] The graph in which paths are searched.

length [integer] The maximum length of paths.

ds_attrs: dict Dataset attributes.

node_label [string] Node attribute used as label. The default node label is atom.

edge_label [string] Edge attribute used as label. The default edge label is bond_type.

path [list] List of paths retrieved, where for unlabeled graphs, each path is represented by a list of nodes; while
for labeled graphs, each path is represented by a list of strings consists of labels of nodes and/or edges on
that path.

paths2labelseqs(plist, G, ds_attrs, node_label, edge_label)

30 Chapter 11. Documentation



graphkit-learn Documentation, Release 1.0.0

untilhpathkernel(*args, node_label=’atom’, edge_label=’bond_type’, depth=10, k_func=’MinMax’,
compute_method=’trie’, parallel=’imap_unordered’, n_jobs=None, verbose=True)

Calculate path graph kernels up to depth/hight h between graphs.

Gn [List of NetworkX graph] List of graphs between which the kernels are calculated.

G1, G2 [NetworkX graphs] Two graphs between which the kernel is calculated.

node_label [string] Node attribute used as label. The default node label is atom.

edge_label [string] Edge attribute used as label. The default edge label is bond_type.

depth [integer] Depth of search. Longest length of paths.

k_func [function] A kernel function applied using different notions of fingerprint similarity, defining the type of
feature map and normalization method applied for the graph kernel. The Following choices are available:

‘MinMax’: use the MiniMax kernel and counting feature map.

‘tanimoto’: use the Tanimoto kernel and binary feature map.

None: no sub-kernel is used, the kernel is computed directly.

compute_method [string] Computation method to store paths and compute the graph kernel. The Following
choices are available:

‘trie’: store paths as tries.

‘naive’: store paths to lists.

n_jobs [int] Number of jobs for parallelization.

Kmatrix [Numpy matrix] Kernel matrix, each element of which is the path kernel up to h between 2 praphs.

wrapper_find_all_path_as_trie(length, ds_attrs, node_label, edge_label, itr_item)

wrapper_find_all_paths_until_length(length, ds_attrs, node_label, edge_label, tolabelseqs,
itr_item)

wrapper_uhpath_do_kernelless(k_func, itr)

wrapper_uhpath_do_naive(k_func, itr)

wrapper_uhpath_do_trie(k_func, itr)

gklearn.kernels.weisfeilerLehmanKernel

@author: linlin

@references:

[1] Shervashidze N, Schweitzer P, Leeuwen EJ, Mehlhorn K, Borgwardt KM. Weisfeiler-lehman graph
kernels. Journal of Machine Learning Research. 2011;12(Sep):2539-61.

compute_kernel_matrix(Kmatrix, all_num_of_each_label, Gn, parallel, n_jobs, verbose)
Compute kernel matrix using the base kernel.

compute_subtree_kernel(num_of_each_label1, num_of_each_label2, kernel)
Compute the subtree kernel.

weisfeilerlehmankernel(*args, node_label=’atom’, edge_label=’bond_type’, height=0,
base_kernel=’subtree’, parallel=None, n_jobs=None, verbose=True)

Calculate Weisfeiler-Lehman kernels between graphs.

Gn [List of NetworkX graph] List of graphs between which the kernels are calculated.

11.1. Modules 31



graphkit-learn Documentation, Release 1.0.0

G1, G2 [NetworkX graphs] Two graphs between which the kernel is calculated.

node_label [string] Node attribute used as label. The default node label is atom.

edge_label [string] Edge attribute used as label. The default edge label is bond_type.

height [int] Subtree height.

base_kernel [string] Base kernel used in each iteration of WL kernel. Only default ‘subtree’ kernel can be
applied for now.

parallel [None] Which paralleliztion method is applied to compute the kernel. No parallelization can be applied
for now.

n_jobs [int] Number of jobs for parallelization. The default is to use all computational cores. This argument is
only valid when one of the parallelization method is applied and can be ignored for now.

Kmatrix [Numpy matrix] Kernel matrix, each element of which is the Weisfeiler-Lehman kernel between 2
praphs.

This function now supports WL subtree kernel only.

wl_iteration(G, node_label)

wrapper_compute_subtree_kernel(Kmatrix, itr)

wrapper_wl_iteration(node_label, itr_item)

gklearn.utils

gklearn - utils module

Implement some methods to manage graphs graphfiles.py : load .gxl and .ct files utils.py : compute some proper-
ties on networkX graphs

gklearn.utils.graphdataset

Obtain all kinds of attributes of a graph dataset.

get_dataset_attributes(Gn, target=None, attr_names=[], node_label=None, edge_label=None)
Returns the structure and property information of the graph dataset Gn.

Gn [List of NetworkX graph] List of graphs whose information will be returned.

target [list] The list of classification targets corresponding to Gn. Only works for classification problems.

attr_names [list] List of strings which indicate which informations will be returned. The possible choices
includes:

‘substructures’: sub-structures Gn contains, including ‘linear’, ‘non linear’ and ‘cyclic’.

‘node_labeled’: whether vertices have symbolic labels.

‘edge_labeled’: whether egdes have symbolic labels.

‘is_directed’: whether graphs in Gn are directed.

‘dataset_size’: number of graphs in Gn.

‘ave_node_num’: average number of vertices of graphs in Gn.

‘min_node_num’: minimum number of vertices of graphs in Gn.

32 Chapter 11. Documentation



graphkit-learn Documentation, Release 1.0.0

‘max_node_num’: maximum number of vertices of graphs in Gn.

‘ave_edge_num’: average number of edges of graphs in Gn.

‘min_edge_num’: minimum number of edges of graphs in Gn.

‘max_edge_num’: maximum number of edges of graphs in Gn.

‘ave_node_degree’: average vertex degree of graphs in Gn.

‘min_node_degree’: minimum vertex degree of graphs in Gn.

‘max_node_degree’: maximum vertex degree of graphs in Gn.

‘ave_fill_factor’: average fill factor (number_of_edges / (number_of_nodes ** 2)) of graphs in Gn.

‘min_fill_factor’: minimum fill factor of graphs in Gn.

‘max_fill_factor’: maximum fill factor of graphs in Gn.

‘node_label_num’: number of symbolic vertex labels.

‘edge_label_num’: number of symbolic edge labels.

‘node_attr_dim’: number of dimensions of non-symbolic vertex labels. Extracted from the ‘attributes’
attribute of graph nodes.

‘edge_attr_dim’: number of dimensions of non-symbolic edge labels. Extracted from the ‘attributes’
attribute of graph edges.

‘class_number’: number of classes. Only available for classification problems.

node_label [string] Node attribute used as label. The default node label is atom. Mandatory when
‘node_labeled’ or ‘node_label_num’ is required.

edge_label [string] Edge attribute used as label. The default edge label is bond_type. Mandatory when
‘edge_labeled’ or ‘edge_label_num’ is required.

attrs [dict] Value for each property.

gklearn.utils.graphfiles

Utilities function to manage graph files

loadCT(filename)
load data from a Chemical Table (.ct) file.

a typical example of data in .ct is like this:

3 2 <- number of nodes and edges

0.0000 0.0000 0.0000 C <- each line describes a node (x,y,z + label)

0.0000 0.0000 0.0000 C

0.0000 0.0000 0.0000 O

1 3 1 1 <- each line describes an edge : to, from, bond type, bond stereo

2 3 1 1

Check CTFile Formats file for detailed format discription.

loadDataset(filename, filename_y=None, extra_params=None)
Read graph data from filename and load them as NetworkX graphs.

11.1. Modules 33

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=10&ved=2ahUKEwivhaSdjsTlAhVhx4UKHczHA8gQFjAJegQIARAC&url=https%3A%2F%2Fwww.daylight.com%2Fmeetings%2Fmug05%2FKappler%2Fctfile.pdf&usg=AOvVaw1cDNrrmMClkFPqodlF2inS


graphkit-learn Documentation, Release 1.0.0

filename [string] The name of the file from where the dataset is read.

filename_y [string] The name of file of the targets corresponding to graphs.

extra_params [dict] Extra parameters only designated to ‘.mat’ format.

data : List of NetworkX graph.

y : List

Targets corresponding to graphs.

This function supports following graph dataset formats:

‘ds’: load data from .ds file. See comments of function loadFromDS for a example.

‘cxl’: load data from Graph eXchange Language file (.cxl file). See here for detail.

‘sdf’: load data from structured data file (.sdf file). See here for details.

‘mat’: Load graph data from a MATLAB (up to version 7.1) .mat file. See README in downloadable file for
details.

‘txt’: Load graph data from a special .txt file. See here for details. Note here filename is the name of either .txt
file in the dataset directory.

loadFromDS(filename, filename_y)
Load data from .ds file.

Possible graph formats include:

‘.ct’: see function loadCT for detail.

‘.gxl’: see dunction loadGXL for detail.

Note these graph formats are checked automatically by the extensions of graph files.

loadFromXML(filename, extra_params)

loadGXL(filename)

loadMAT(filename, extra_params)
Load graph data from a MATLAB (up to version 7.1) .mat file.

A MAT file contains a struct array containing graphs, and a column vector lx containing a class label for each
graph. Check README in downloadable file for detailed structure.

loadSDF(filename)
load data from structured data file (.sdf file).

A SDF file contains a group of molecules, represented in the similar way as in MOL format. Check here for
detailed structure.

loadTXT(filename)
Load graph data from a .txt file.

The graph data is loaded from separate files. Check README in downloadable file, 2018 for detailed structure.

saveDataset(Gn, y, gformat=’gxl’, group=None, filename=’gfile’, xparams=None)
Save list of graphs.

saveGXL(graph, filename, method=’default’)

34 Chapter 11. Documentation

http://www.gupro.de/GXL/Introduction/background.html
http://www.nonlinear.com/progenesis/sdf-studio/v0.9/faq/sdf-file-format-guidance.aspx
http://mlcb.is.tuebingen.mpg.de/Mitarbeiter/Nino/WL/
https://ls11-www.cs.tu-dortmund.de/staff/morris/graphkerneldatasets
http://mlcb.is.tuebingen.mpg.de/Mitarbeiter/Nino/WL/
http://www.nonlinear.com/progenesis/sdf-studio/v0.9/faq/sdf-file-format-guidance.aspx
http://tiny.cc/PK_MLJ_data


graphkit-learn Documentation, Release 1.0.0

gklearn.utils.kernels

Those who are not graph kernels. We can be kernels for nodes or edges! These kernels are defined between pairs of
vectors.

deltakernel(x, y)
Delta kernel. Return 1 if x == y, 0 otherwise.

x, y [any] Two parts to compare.

kernel [integer] Delta kernel.

[1] H. Kashima, K. Tsuda, and A. Inokuchi. Marginalized kernels between labeled graphs. In Proceedings of
the 20th International Conference on Machine Learning, Washington, DC, United States, 2003.

gaussiankernel(x, y, gamma=None)
Gaussian kernel. Compute the rbf (gaussian) kernel between x and y:

K(x, y) = exp(-gamma ||x-y||^2).

Read more in the User Guide of scikit-learn library.

x, y : array

gamma [float, default None] If None, defaults to 1.0 / n_features

kernel : float

kernelproduct(k1, k2, d11, d12, d21=None, d22=None, lamda=1)
Product of a pair of kernels.

k = lamda * k1(d11, d12) * k2(d21, d22)

k1, k2 [function] A pair of kernel functions.

d11, d12: Inputs of k1. If d21 or d22 is None, apply d11, d12 to both k1 and k2.

d21, d22: Inputs of k2.

lamda: float Coefficient of the product.

kernel : integer

kernelsum(k1, k2, d11, d12, d21=None, d22=None, lamda1=1, lamda2=1)
Sum of a pair of kernels.

k = lamda1 * k1(d11, d12) + lamda2 * k2(d21, d22)

k1, k2 [function] A pair of kernel functions.

d11, d12: Inputs of k1. If d21 or d22 is None, apply d11, d12 to both k1 and k2.

d21, d22: Inputs of k2.

lamda1, lamda2: float Coefficients of the product.

kernel : integer

linearkernel(x, y)
Polynomial kernel. Compute the polynomial kernel between x and y:

K(x, y) = <x, y>.

x, y : array

d : integer, default 1

11.1. Modules 35

https://scikit-learn.org/stable/modules/metrics.html#rbf-kernel


graphkit-learn Documentation, Release 1.0.0

c : float, default 0

kernel : float

polynomialkernel(x, y, d=1, c=0)
Polynomial kernel. Compute the polynomial kernel between x and y:

K(x, y) = <x, y> ^d + c.

x, y : array

d : integer, default 1

c : float, default 0

kernel : float

gklearn.utils.model_selection_precomputed

compute_gram_matrices(dataset, y, estimator, param_list_precomputed, results_dir, ds_name,
n_jobs=1, str_fw=”, verbose=True)

model_selection_for_precomputed_kernel(datafile, estimator, param_grid_precomputed,
param_grid, model_type, NUM_TRIALS=30,
datafile_y=None, extra_params=None,
ds_name=’ds-unknown’, n_jobs=1,
read_gm_from_file=False, verbose=True)

Perform model selection, fitting and testing for precomputed kernels using nested CV. Print out neccessary data
during the process then finally the results.

datafile [string] Path of dataset file.

estimator [function] kernel function used to estimate. This function needs to return a gram matrix.

param_grid_precomputed [dictionary] Dictionary with names (string) of parameters used to calculate gram
matrices as keys and lists of parameter settings to try as values. This enables searching over any sequence
of parameter settings. Params with length 1 will be omitted.

param_grid [dictionary] Dictionary with names (string) of parameters used as penelties as keys and lists of
parameter settings to try as values. This enables searching over any sequence of parameter settings. Params
with length 1 will be omitted.

model_type [string] Type of the problem, can be ‘regression’ or ‘classification’.

NUM_TRIALS [integer] Number of random trials of outer cv loop. The default is 30.

datafile_y [string] Path of file storing y data. This parameter is optional depending on the given dataset file.

extra_params [dict] Extra parameters for loading dataset. See function gklearn.utils. graphfiles.loadDataset
for detail.

ds_name [string] Name of the dataset.

n_jobs [int] Number of jobs for parallelization.

read_gm_from_file [boolean] Whether gram matrices are loaded from a file.

>>> import numpy as np
>>> from gklearn.utils.model_selection_precomputed import model_selection_for_
→˓precomputed_kernel
>>> from gklearn.kernels.untilHPathKernel import untilhpathkernel
>>>
>>> datafile = '../datasets/MUTAG/MUTAG_A.txt'

(continues on next page)

36 Chapter 11. Documentation



graphkit-learn Documentation, Release 1.0.0

(continued from previous page)

>>> estimator = untilhpathkernel
>>> param_grid_precomputed = {’depth’: np.linspace(1, 10, 10), ’k_func’:

[’MinMax’, ’tanimoto’], ’compute_method’: [’trie’]}
>>> # ’C’ for classification problems and ’alpha’ for regression problems.
>>> param_grid = [{’C’: np.logspace(-10, 10, num=41, base=10)}, {’alpha’:

np.logspace(-10, 10, num=41, base=10)}]
>>>
>>> model_selection_for_precomputed_kernel(datafile, estimator,

param_grid_precomputed, param_grid[0], 'classification', ds_name=’MUTAG’)

parallel_trial_do(param_list_pre_revised, param_list, y, model_type, trial)

printResultsInTable(param_list, param_list_pre_revised, average_val_scores, std_val_scores, av-
erage_perf_scores, std_perf_scores, average_train_scores, std_train_scores,
gram_matrix_time, model_type, verbose)

read_gram_matrices_from_file(results_dir, ds_name)

trial_do(param_list_pre_revised, param_list, gram_matrices, y, model_type, trial)

gklearn.utils.parallel

Created on Tue Dec 11 11:39:46 2018 Parallel aid functions. @author: ljia

parallel_gm(func, Kmatrix, Gn, init_worker=None, glbv=None, method=’imap_unordered’,
n_jobs=None, chunksize=None, verbose=True)

parallel_me(func, func_assign, var_to_assign, itr, len_itr=None, init_worker=None, glbv=None,
method=None, n_jobs=None, chunksize=None, itr_desc=”, verbose=True)

gklearn.utils.trie

Created on Wed Jan 30 10:48:49 2019

Trie (prefix tree) @author: ljia @references: NLP: Build a Trie Data structure from scratch with python, 2019.1

class Trie
Bases: object

deleteWord(word)

getNode()

insertWord(word)

load_from_json(file_name)

load_from_pickle(file_name)

save_to_json(file_name)

save_to_pickle(file_name)

searchWord(word)

searchWordPrefix(word)

to_json()

11.1. Modules 37

https://viblo.asia/p/nlp-build-a-trie-data-structure-from-scratch-with-python-3P0lPzroKox


graphkit-learn Documentation, Release 1.0.0

gklearn.utils.utils

direct_product(G1, G2, node_label, edge_label)
Return the direct/tensor product of directed graphs G1 and G2.

G1, G2 [NetworkX graph] The original graphs.

node_label [string] node attribute used as label. The default node label is ‘atom’.

edge_label [string] edge attribute used as label. The default edge label is ‘bond_type’.

gt [NetworkX graph] The direct product graph of G1 and G2.

This method differs from networkx.tensor_product in that this method only adds nodes and edges in G1 and G2
that have the same labels to the direct product graph.

[1] Thomas Gärtner, Peter Flach, and Stefan Wrobel. On graph kernels: Hardness results and efficient alterna-
tives. Learning Theory and Kernel Machines, pages 129–143, 2003.

floydTransformation(G, edge_weight=None)
Transform graph G to its corresponding shortest-paths graph using Floyd-transformation.

G [NetworkX graph] The graph to be tramsformed.

edge_weight [string] edge attribute corresponding to the edge weight. The default edge weight is bond_type.

S [NetworkX graph] The shortest-paths graph corresponding to G.

[1] Borgwardt KM, Kriegel HP. Shortest-path kernels on graphs. InData Mining, Fifth IEEE International
Conference on 2005 Nov 27 (pp. 8-pp). IEEE.

getSPGraph(G, edge_weight=None)
Transform graph G to its corresponding shortest-paths graph.

G [NetworkX graph] The graph to be tramsformed.

edge_weight [string] edge attribute corresponding to the edge weight.

S [NetworkX graph] The shortest-paths graph corresponding to G.

For an input graph G, its corresponding shortest-paths graph S contains the same set of nodes as G, while there
exists an edge between all nodes in S which are connected by a walk in G. Every edge in S between two nodes
is labeled by the shortest distance between these two nodes.

[1] Borgwardt KM, Kriegel HP. Shortest-path kernels on graphs. InData Mining, Fifth IEEE International
Conference on 2005 Nov 27 (pp. 8-pp). IEEE.

getSPLengths(G1)

get_edge_labels(Gn, edge_label)
Get edge labels of dataset Gn.

get_node_labels(Gn, node_label)
Get node labels of dataset Gn.

graph_deepcopy(G)
Deep copy a graph, including deep copy of all nodes, edges and attributes of the graph, nodes and edges.

It is the same as the NetworkX function graph.copy(), as far as I know.

graph_isIdentical(G1, G2)
Check if two graphs are identical, including: same nodes, edges, node labels/attributes, edge labels/attributes.

38 Chapter 11. Documentation



graphkit-learn Documentation, Release 1.0.0

1. The type of graphs has to be the same.

2. Global/Graph attributes are neglected as they may contain names for graphs.

untotterTransformation(G, node_label, edge_label)
Transform graph G according to Mahé et al.’s work to filter out tottering patterns of marginalized kernel and tree
pattern kernel.

G [NetworkX graph] The graph to be tramsformed.

node_label [string] node attribute used as label. The default node label is ‘atom’.

edge_label [string] edge attribute used as label. The default edge label is ‘bond_type’.

gt [NetworkX graph] The transformed graph corresponding to G.

[1] Pierre Mahé, Nobuhisa Ueda, Tatsuya Akutsu, Jean-Luc Perret, and Jean-Philippe Vert. Extensions of
marginalized graph kernels. In Proceedings of the twenty-first international conference on Machine learning,
page 70. ACM, 2004.

11.2 Experiments

To exhibit the effectiveness and practicability of graphkit-learn library, we tested it on several benchmark datasets.
See (Kersting et al., 2016) for details on these datasets.

A two-layer nested cross-validation (CV) is applied to select and evaluate models, where outer CV randomly splits the
dataset into 10 folds with 9 as validation set, and inner CV then randomly splits validation set to 10 folds with 9 as
training set. The whole procedure is performed 30 times, and the average performance is computed over these trails.
Possible parameters of a graph kernel are also tuned during this procedure.

The machine used to execute the experiments is a cluster with 28 CPU cores of Intel(R) Xeon(R) E5-2680 v4 @
2.40GHz, 252GB memory, and 64-bit operating system CentOS Linux release 7.3.1611. All results were run with
Python 3.5.2.

The figure below exhibits accuracies achieved by graph kernels implemented in graphkit-learn library. Each row
corresponds to a dataset and each column to a graph kernel. Accuracies are in percentage for classification and in
terms of errors of boiling points for regression (Alkane and Acyclic datasets). Red color indicates a worse result and
green a better one. Gray cells with the “inf” marker indicate that the computation of the graph kernel on the dataset is
neglected due to much higher consumption of computational resources than other kernels.

The figure below displays computational time consumed to compute Gram matrices of each graph kernels (in 𝑙𝑜𝑔10
of seconds) on each dataset. Colors have the same meaning as in the figure above.

11.2. Experiments 39

http://graphkernels.cs.tu-dortmund.de


graphkit-learn Documentation, Release 1.0.0

40 Chapter 11. Documentation



CHAPTER 12

Indices and tables

• genindex

• modindex

• search

41



graphkit-learn Documentation, Release 1.0.0

42 Chapter 12. Indices and tables



Python Module Index

g
gklearn, 23
gklearn.kernels, 23
gklearn.kernels.commonWalkKernel, 23
gklearn.kernels.marginalizedKernel, 25
gklearn.kernels.randomWalkKernel, 25
gklearn.kernels.spKernel, 27
gklearn.kernels.structuralspKernel, 27
gklearn.kernels.treeletKernel, 29
gklearn.kernels.untilHPathKernel, 30
gklearn.kernels.weisfeilerLehmanKernel,

31
gklearn.utils, 32
gklearn.utils.graphdataset, 32
gklearn.utils.graphfiles, 33
gklearn.utils.kernels, 35
gklearn.utils.model_selection_precomputed,

36
gklearn.utils.parallel, 37
gklearn.utils.trie, 37
gklearn.utils.utils, 38

43



graphkit-learn Documentation, Release 1.0.0

44 Python Module Index



Index

C
commonwalkkernel() (in module gk-

learn.kernels.commonWalkKernel), 23
compute_gram_matrices() (in module gk-

learn.utils.model_selection_precomputed),
36

compute_kernel_matrix() (in module gk-
learn.kernels.weisfeilerLehmanKernel), 31

compute_subtree_kernel() (in module gk-
learn.kernels.weisfeilerLehmanKernel), 31

computeVK() (in module gk-
learn.kernels.randomWalkKernel), 25

computeW() (in module gk-
learn.kernels.randomWalkKernel), 25

D
deleteWord() (Trie method), 37
deltakernel() (in module gklearn.utils.kernels), 35
direct_product() (in module gklearn.utils.utils),

38

F
filterGramMatrix() (in module gk-

learn.kernels.randomWalkKernel), 25
find_all_path_as_trie() (in module gk-

learn.kernels.untilHPathKernel), 30
find_all_paths() (in module gk-

learn.kernels.treeletKernel), 29
find_all_paths_until_length() (in module

gklearn.kernels.untilHPathKernel), 30
find_all_walks() (in module gk-

learn.kernels.commonWalkKernel), 24
find_all_walks_until_length() (in module

gklearn.kernels.commonWalkKernel), 24
find_paths() (in module gk-

learn.kernels.treeletKernel), 29
find_walks() (in module gk-

learn.kernels.commonWalkKernel), 24
floydTransformation() (in module gk-

learn.utils.utils), 38

func_fp() (in module gk-
learn.kernels.randomWalkKernel), 25

G
gaussiankernel() (in module gklearn.utils.kernels),

35
get_canonkeys() (in module gk-

learn.kernels.treeletKernel), 29
get_dataset_attributes() (in module gk-

learn.utils.graphdataset), 32
get_edge_labels() (in module gklearn.utils.utils),

38
get_node_labels() (in module gklearn.utils.utils),

38
get_shortest_paths() (in module gk-

learn.kernels.structuralspKernel), 27
get_sps_as_trie() (in module gk-

learn.kernels.structuralspKernel), 28
getAllEdgeKernels() (in module gk-

learn.kernels.structuralspKernel), 27
getAllNodeKernels() (in module gk-

learn.kernels.structuralspKernel), 27
getLabels() (in module gk-

learn.kernels.randomWalkKernel), 25
getNode() (Trie method), 37
getSPGraph() (in module gklearn.utils.utils), 38
getSPLengths() (in module gklearn.utils.utils), 38
gklearn (module), 23
gklearn.kernels (module), 23
gklearn.kernels.commonWalkKernel (mod-

ule), 23
gklearn.kernels.marginalizedKernel (mod-

ule), 25
gklearn.kernels.randomWalkKernel (mod-

ule), 25
gklearn.kernels.spKernel (module), 27
gklearn.kernels.structuralspKernel (mod-

ule), 27
gklearn.kernels.treeletKernel (module), 29

45



graphkit-learn Documentation, Release 1.0.0

gklearn.kernels.untilHPathKernel (mod-
ule), 30

gklearn.kernels.weisfeilerLehmanKernel
(module), 31

gklearn.utils (module), 32
gklearn.utils.graphdataset (module), 32
gklearn.utils.graphfiles (module), 33
gklearn.utils.kernels (module), 35
gklearn.utils.model_selection_precomputed

(module), 36
gklearn.utils.parallel (module), 37
gklearn.utils.trie (module), 37
gklearn.utils.utils (module), 38
graph_deepcopy() (in module gklearn.utils.utils),

38
graph_isIdentical() (in module gk-

learn.utils.utils), 38

I
insertWord() (Trie method), 37

K
kernelproduct() (in module gklearn.utils.kernels),

35
kernelsum() (in module gklearn.utils.kernels), 35

L
linearkernel() (in module gklearn.utils.kernels), 35
load_from_json() (Trie method), 37
load_from_pickle() (Trie method), 37
loadCT() (in module gklearn.utils.graphfiles), 33
loadDataset() (in module gklearn.utils.graphfiles),

33
loadFromDS() (in module gklearn.utils.graphfiles), 34
loadFromXML() (in module gklearn.utils.graphfiles),

34
loadGXL() (in module gklearn.utils.graphfiles), 34
loadMAT() (in module gklearn.utils.graphfiles), 34
loadSDF() (in module gklearn.utils.graphfiles), 34
loadTXT() (in module gklearn.utils.graphfiles), 34

M
marginalizedkernel() (in module gk-

learn.kernels.marginalizedKernel), 25
model_selection_for_precomputed_kernel()

(in module gk-
learn.utils.model_selection_precomputed),
36

P
parallel_gm() (in module gklearn.utils.parallel), 37
parallel_me() (in module gklearn.utils.parallel), 37

parallel_trial_do() (in module gk-
learn.utils.model_selection_precomputed),
37

paths2labelseqs() (in module gk-
learn.kernels.untilHPathKernel), 30

polynomialkernel() (in module gk-
learn.utils.kernels), 36

printResultsInTable() (in module gk-
learn.utils.model_selection_precomputed),
37

R
randomwalkkernel() (in module gk-

learn.kernels.randomWalkKernel), 25
read_gram_matrices_from_file() (in module

gklearn.utils.model_selection_precomputed),
37

S
save_to_json() (Trie method), 37
save_to_pickle() (Trie method), 37
saveDataset() (in module gklearn.utils.graphfiles),

34
saveGXL() (in module gklearn.utils.graphfiles), 34
searchWord() (Trie method), 37
searchWordPrefix() (Trie method), 37
spkernel() (in module gklearn.kernels.spKernel), 27
spkernel_do() (in module gk-

learn.kernels.spKernel), 27
ssp_do_trie() (in module gk-

learn.kernels.structuralspKernel), 28
structuralspkernel() (in module gk-

learn.kernels.structuralspKernel), 28
structuralspkernel_do() (in module gk-

learn.kernels.structuralspKernel), 28

T
to_json() (Trie method), 37
traverseBothTriee() (in module gk-

learn.kernels.structuralspKernel), 28
traverseBothTriem() (in module gk-

learn.kernels.structuralspKernel), 28
traverseBothTrieu() (in module gk-

learn.kernels.structuralspKernel), 28
traverseBothTriev() (in module gk-

learn.kernels.structuralspKernel), 29
traverseTrie2e() (in module gk-

learn.kernels.structuralspKernel), 29
traverseTrie2m() (in module gk-

learn.kernels.structuralspKernel), 29
traverseTrie2u() (in module gk-

learn.kernels.structuralspKernel), 29
traverseTrie2v() (in module gk-

learn.kernels.structuralspKernel), 29

46 Index



graphkit-learn Documentation, Release 1.0.0

treeletkernel() (in module gk-
learn.kernels.treeletKernel), 29

trial_do() (in module gk-
learn.utils.model_selection_precomputed),
37

Trie (class in gklearn.utils.trie), 37

U
untilhpathkernel() (in module gk-

learn.kernels.untilHPathKernel), 30
untotterTransformation() (in module gk-

learn.utils.utils), 39

W
weisfeilerlehmankernel() (in module gk-

learn.kernels.weisfeilerLehmanKernel), 31
wl_iteration() (in module gk-

learn.kernels.weisfeilerLehmanKernel), 32
wrapper_cg_labled_do() (in module gk-

learn.kernels.randomWalkKernel), 26
wrapper_cg_unlabled_do() (in module gk-

learn.kernels.randomWalkKernel), 26
wrapper_compute_subtree_kernel() (in mod-

ule gklearn.kernels.weisfeilerLehmanKernel),
32

wrapper_cw_exp() (in module gk-
learn.kernels.commonWalkKernel), 24

wrapper_cw_geo() (in module gk-
learn.kernels.commonWalkKernel), 24

wrapper_find_all_path_as_trie() (in mod-
ule gklearn.kernels.untilHPathKernel), 31

wrapper_find_all_paths_until_length()
(in module gklearn.kernels.untilHPathKernel),
31

wrapper_fp_labled_do() (in module gk-
learn.kernels.randomWalkKernel), 26

wrapper_get_canonkeys() (in module gk-
learn.kernels.treeletKernel), 30

wrapper_getSP_naive() (in module gk-
learn.kernels.structuralspKernel), 29

wrapper_getSP_trie() (in module gk-
learn.kernels.structuralspKernel), 29

wrapper_getSPGraph() (in module gk-
learn.kernels.spKernel), 27

wrapper_marg_do() (in module gk-
learn.kernels.marginalizedKernel), 25

wrapper_sd_do() (in module gk-
learn.kernels.randomWalkKernel), 26

wrapper_se_do() (in module gk-
learn.kernels.randomWalkKernel), 27

wrapper_sp_do() (in module gk-
learn.kernels.spKernel), 27

wrapper_ssp_do() (in module gk-
learn.kernels.structuralspKernel), 29

wrapper_ssp_do_trie() (in module gk-
learn.kernels.structuralspKernel), 29

wrapper_treeletkernel_do() (in module gk-
learn.kernels.treeletKernel), 30

wrapper_uhpath_do_kernelless() (in module
gklearn.kernels.untilHPathKernel), 31

wrapper_uhpath_do_naive() (in module gk-
learn.kernels.untilHPathKernel), 31

wrapper_uhpath_do_trie() (in module gk-
learn.kernels.untilHPathKernel), 31

wrapper_untotter() (in module gk-
learn.kernels.marginalizedKernel), 25

wrapper_wl_iteration() (in module gk-
learn.kernels.weisfeilerLehmanKernel), 32

Index 47


	Requirements
	How to use?
	List of graph kernels
	Computation optimization methods
	Issues
	Results
	References
	Authors
	Citation
	Acknowledgments
	Documentation
	Indices and tables
	Python Module Index
	Index

