Source code for gklearn.utils.graphfiles

""" Utilities function to manage graph files
"""
from os.path import dirname, splitext

[docs]def loadCT(filename): """load data from a Chemical Table (.ct) file. Notes ------ a typical example of data in .ct is like this: 3 2 <- number of nodes and edges 0.0000 0.0000 0.0000 C <- each line describes a node (x,y,z + label) 0.0000 0.0000 0.0000 C 0.0000 0.0000 0.0000 O 1 3 1 1 <- each line describes an edge : to, from, bond type, bond stereo 2 3 1 1 Check `CTFile Formats file <https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=10&ved=2ahUKEwivhaSdjsTlAhVhx4UKHczHA8gQFjAJegQIARAC&url=https%3A%2F%2Fwww.daylight.com%2Fmeetings%2Fmug05%2FKappler%2Fctfile.pdf&usg=AOvVaw1cDNrrmMClkFPqodlF2inS>`__ for detailed format discription. """ import networkx as nx from os.path import basename g = nx.Graph() with open(filename) as f: content = f.read().splitlines() g = nx.Graph( name = str(content[0]), filename = basename(filename)) # set name of the graph tmp = content[1].split(" ") if tmp[0] == '': nb_nodes = int(tmp[1]) # number of the nodes nb_edges = int(tmp[2]) # number of the edges else: nb_nodes = int(tmp[0]) nb_edges = int(tmp[1]) # patch for compatibility : label will be removed later for i in range(0, nb_nodes): tmp = content[i + 2].split(" ") tmp = [x for x in tmp if x != ''] g.add_node(i, atom=tmp[3].strip(), label=[item.strip() for item in tmp[3:]], attributes=[item.strip() for item in tmp[0:3]]) for i in range(0, nb_edges): tmp = content[i + g.number_of_nodes() + 2].split(" ") tmp = [x for x in tmp if x != ''] g.add_edge(int(tmp[0]) - 1, int(tmp[1]) - 1, bond_type=tmp[2].strip(), label=[item.strip() for item in tmp[2:]]) return g
[docs]def loadGXL(filename): from os.path import basename import networkx as nx import xml.etree.ElementTree as ET tree = ET.parse(filename) root = tree.getroot() index = 0 g = nx.Graph(filename=basename(filename), name=root[0].attrib['id']) dic = {} # used to retrieve incident nodes of edges for node in root.iter('node'): dic[node.attrib['id']] = index labels = {} for attr in node.iter('attr'): labels[attr.attrib['name']] = attr[0].text if 'chem' in labels: labels['label'] = labels['chem'] labels['atom'] = labels['chem'] g.add_node(index, **labels) index += 1 for edge in root.iter('edge'): labels = {} for attr in edge.iter('attr'): labels[attr.attrib['name']] = attr[0].text if 'valence' in labels: labels['label'] = labels['valence'] labels['bond_type'] = labels['valence'] g.add_edge(dic[edge.attrib['from']], dic[edge.attrib['to']], **labels) return g
[docs]def saveGXL(graph, filename, method='default', node_labels=[], edge_labels=[], node_attrs=[], edge_attrs=[]): if method == 'default': gxl_file = open(filename, 'w') gxl_file.write("<?xml version=\"1.0\" encoding=\"UTF-8\"?>\n") gxl_file.write("<!DOCTYPE gxl SYSTEM \"http://www.gupro.de/GXL/gxl-1.0.dtd\">\n") gxl_file.write("<gxl xmlns:xlink=\"http://www.w3.org/1999/xlink\">\n") if 'name' in graph.graph: name = str(graph.graph['name']) else: name = 'dummy' gxl_file.write("<graph id=\"" + name + "\" edgeids=\"false\" edgemode=\"undirected\">\n") for v, attrs in graph.nodes(data=True): gxl_file.write("<node id=\"_" + str(v) + "\">") for l_name in node_labels: gxl_file.write("<attr name=\"" + l_name + "\"><int>" + str(attrs[l_name]) + "</int></attr>") for a_name in node_attrs: gxl_file.write("<attr name=\"" + a_name + "\"><float>" + str(attrs[a_name]) + "</float></attr>") gxl_file.write("</node>\n") for v1, v2, attrs in graph.edges(data=True): gxl_file.write("<edge from=\"_" + str(v1) + "\" to=\"_" + str(v2) + "\">") for l_name in edge_labels: gxl_file.write("<attr name=\"" + l_name + "\"><int>" + str(attrs[l_name]) + "</int></attr>") for a_name in edge_attrs: gxl_file.write("<attr name=\"" + a_name + "\"><float>" + str(attrs[a_name]) + "</float></attr>") gxl_file.write("</edge>\n") gxl_file.write("</graph>\n") gxl_file.write("</gxl>") gxl_file.close() elif method == 'benoit': import xml.etree.ElementTree as ET root_node = ET.Element('gxl') attr = dict() attr['id'] = str(graph.graph['name']) attr['edgeids'] = 'true' attr['edgemode'] = 'undirected' graph_node = ET.SubElement(root_node, 'graph', attrib=attr) for v in graph: current_node = ET.SubElement(graph_node, 'node', attrib={'id': str(v)}) for attr in graph.nodes[v].keys(): cur_attr = ET.SubElement( current_node, 'attr', attrib={'name': attr}) cur_value = ET.SubElement(cur_attr, graph.nodes[v][attr].__class__.__name__) cur_value.text = graph.nodes[v][attr] for v1 in graph: for v2 in graph[v1]: if (v1 < v2): # Non oriented graphs cur_edge = ET.SubElement( graph_node, 'edge', attrib={ 'from': str(v1), 'to': str(v2) }) for attr in graph[v1][v2].keys(): cur_attr = ET.SubElement( cur_edge, 'attr', attrib={'name': attr}) cur_value = ET.SubElement( cur_attr, graph[v1][v2][attr].__class__.__name__) cur_value.text = str(graph[v1][v2][attr]) tree = ET.ElementTree(root_node) tree.write(filename) elif method == 'gedlib': # reference: https://github.com/dbblumenthal/gedlib/blob/master/data/generate_molecules.py#L22 # pass gxl_file = open(filename, 'w') gxl_file.write("<?xml version=\"1.0\" encoding=\"UTF-8\"?>\n") gxl_file.write("<!DOCTYPE gxl SYSTEM \"http://www.gupro.de/GXL/gxl-1.0.dtd\">\n") gxl_file.write("<gxl xmlns:xlink=\"http://www.w3.org/1999/xlink\">\n") gxl_file.write("<graph id=\"" + str(graph.graph['name']) + "\" edgeids=\"true\" edgemode=\"undirected\">\n") for v, attrs in graph.nodes(data=True): gxl_file.write("<node id=\"_" + str(v) + "\">") gxl_file.write("<attr name=\"" + "chem" + "\"><int>" + str(attrs['chem']) + "</int></attr>") gxl_file.write("</node>\n") for v1, v2, attrs in graph.edges(data=True): gxl_file.write("<edge from=\"_" + str(v1) + "\" to=\"_" + str(v2) + "\">") gxl_file.write("<attr name=\"valence\"><int>" + str(attrs['valence']) + "</int></attr>") # gxl_file.write("<attr name=\"valence\"><int>" + "1" + "</int></attr>") gxl_file.write("</edge>\n") gxl_file.write("</graph>\n") gxl_file.write("</gxl>") gxl_file.close() elif method == 'gedlib-letter': # reference: https://github.com/dbblumenthal/gedlib/blob/master/data/generate_molecules.py#L22 # and https://github.com/dbblumenthal/gedlib/blob/master/data/datasets/Letter/HIGH/AP1_0000.gxl gxl_file = open(filename, 'w') gxl_file.write("<?xml version=\"1.0\" encoding=\"UTF-8\"?>\n") gxl_file.write("<!DOCTYPE gxl SYSTEM \"http://www.gupro.de/GXL/gxl-1.0.dtd\">\n") gxl_file.write("<gxl xmlns:xlink=\"http://www.w3.org/1999/xlink\">\n") gxl_file.write("<graph id=\"" + str(graph.graph['name']) + "\" edgeids=\"false\" edgemode=\"undirected\">\n") for v, attrs in graph.nodes(data=True): gxl_file.write("<node id=\"_" + str(v) + "\">") gxl_file.write("<attr name=\"x\"><float>" + str(attrs['attributes'][0]) + "</float></attr>") gxl_file.write("<attr name=\"y\"><float>" + str(attrs['attributes'][1]) + "</float></attr>") gxl_file.write("</node>\n") for v1, v2, attrs in graph.edges(data=True): gxl_file.write("<edge from=\"_" + str(v1) + "\" to=\"_" + str(v2) + "\"/>\n") gxl_file.write("</graph>\n") gxl_file.write("</gxl>") gxl_file.close()
[docs]def loadSDF(filename): """load data from structured data file (.sdf file). Notes ------ A SDF file contains a group of molecules, represented in the similar way as in MOL format. Check `here <http://www.nonlinear.com/progenesis/sdf-studio/v0.9/faq/sdf-file-format-guidance.aspx>`__ for detailed structure. """ import networkx as nx from os.path import basename from tqdm import tqdm import sys data = [] with open(filename) as f: content = f.read().splitlines() index = 0 pbar = tqdm(total=len(content) + 1, desc='load SDF', file=sys.stdout) while index < len(content): index_old = index g = nx.Graph(name=content[index].strip()) # set name of the graph tmp = content[index + 3] nb_nodes = int(tmp[:3]) # number of the nodes nb_edges = int(tmp[3:6]) # number of the edges for i in range(0, nb_nodes): tmp = content[i + index + 4] g.add_node(i, atom=tmp[31:34].strip()) for i in range(0, nb_edges): tmp = content[i + index + g.number_of_nodes() + 4] tmp = [tmp[i:i + 3] for i in range(0, len(tmp), 3)] g.add_edge( int(tmp[0]) - 1, int(tmp[1]) - 1, bond_type=tmp[2].strip()) data.append(g) index += 4 + g.number_of_nodes() + g.number_of_edges() while content[index].strip() != '$$$$': # seperator index += 1 index += 1 pbar.update(index - index_old) pbar.update(1) pbar.close() return data
[docs]def loadMAT(filename, extra_params): """Load graph data from a MATLAB (up to version 7.1) .mat file. Notes ------ A MAT file contains a struct array containing graphs, and a column vector lx containing a class label for each graph. Check README in `downloadable file <http://mlcb.is.tuebingen.mpg.de/Mitarbeiter/Nino/WL/>`__ for detailed structure. """ from scipy.io import loadmat import numpy as np import networkx as nx data = [] content = loadmat(filename) order = extra_params['am_sp_al_nl_el'] # print(content) # print('----') for key, value in content.items(): if key[0] == 'l': # class label y = np.transpose(value)[0].tolist() # print(y) elif key[0] != '_': # print(value[0][0][0]) # print() # print(value[0][0][1]) # print() # print(value[0][0][2]) # print() # if len(value[0][0]) > 3: # print(value[0][0][3]) # print('----') # if adjacency matrix is not compressed / edge label exists if order[1] == 0: for i, item in enumerate(value[0]): # print(item) # print('------') g = nx.Graph(name=i) # set name of the graph nl = np.transpose(item[order[3]][0][0][0]) # node label # print(item[order[3]]) # print() for index, label in enumerate(nl[0]): g.add_node(index, atom=str(label)) el = item[order[4]][0][0][0] # edge label for edge in el: g.add_edge( edge[0] - 1, edge[1] - 1, bond_type=str(edge[2])) data.append(g) else: from scipy.sparse import csc_matrix for i, item in enumerate(value[0]): # print(item) # print('------') g = nx.Graph(name=i) # set name of the graph nl = np.transpose(item[order[3]][0][0][0]) # node label # print(nl) # print() for index, label in enumerate(nl[0]): g.add_node(index, atom=str(label)) sam = item[order[0]] # sparse adjacency matrix index_no0 = sam.nonzero() for col, row in zip(index_no0[0], index_no0[1]): # print(col) # print(row) g.add_edge(col, row) data.append(g) # print(g.edges(data=True)) return data, y
[docs]def loadTXT(filename): """Load graph data from a .txt file. Notes ------ The graph data is loaded from separate files. Check README in `downloadable file <http://tiny.cc/PK_MLJ_data>`__, 2018 for detailed structure. """ # import numpy as np import networkx as nx from os import listdir from os.path import dirname, basename def get_label_names(frm): """Get label names from DS_label_readme.txt file. """ def get_names_from_line(line): """Get names of labels/attributes from a line. """ str_names = line.split('[')[1].split(']')[0] names = str_names.split(',') names = [attr.strip() for attr in names] return names label_names = {'node_labels': [], 'node_attrs': [], 'edge_labels': [], 'edge_attrs': []} content_rm = open(frm).read().splitlines() for line in content_rm: line = line.strip() if line.startswith('Node labels:'): label_names['node_labels'] = get_names_from_line(line) elif line.startswith('Node attributes:'): label_names['node_attrs'] = get_names_from_line(line) elif line.startswith('Edge labels:'): label_names['edge_labels'] = get_names_from_line(line) elif line.startswith('Edge attributes:'): label_names['edge_attrs'] = get_names_from_line(line) return label_names # get dataset name. dirname_dataset = dirname(filename) filename = basename(filename) fn_split = filename.split('_A') ds_name = fn_split[0].strip() # load data file names for name in listdir(dirname_dataset): if ds_name + '_A' in name: fam = dirname_dataset + '/' + name elif ds_name + '_graph_indicator' in name: fgi = dirname_dataset + '/' + name elif ds_name + '_graph_labels' in name: fgl = dirname_dataset + '/' + name elif ds_name + '_node_labels' in name: fnl = dirname_dataset + '/' + name elif ds_name + '_edge_labels' in name: fel = dirname_dataset + '/' + name elif ds_name + '_edge_attributes' in name: fea = dirname_dataset + '/' + name elif ds_name + '_node_attributes' in name: fna = dirname_dataset + '/' + name elif ds_name + '_graph_attributes' in name: fga = dirname_dataset + '/' + name elif ds_name + '_label_readme' in name: frm = dirname_dataset + '/' + name # this is supposed to be the node attrs, make sure to put this as the last 'elif' elif ds_name + '_attributes' in name: fna = dirname_dataset + '/' + name # get labels and attributes names. if 'frm' in locals(): label_names = get_label_names(frm) else: label_names = {'node_labels': [], 'node_attrs': [], 'edge_labels': [], 'edge_attrs': []} content_gi = open(fgi).read().splitlines() # graph indicator content_am = open(fam).read().splitlines() # adjacency matrix content_gl = open(fgl).read().splitlines() # graph labels # create graphs and add nodes data = [nx.Graph(name=str(i), node_labels=label_names['node_labels'], node_attrs=label_names['node_attrs'], edge_labels=label_names['edge_labels'], edge_attrs=label_names['edge_attrs']) for i in range(0, len(content_gl))] if 'fnl' in locals(): content_nl = open(fnl).read().splitlines() # node labels for idx, line in enumerate(content_gi): # transfer to int first in case of unexpected blanks data[int(line) - 1].add_node(idx) labels = [l.strip() for l in content_nl[idx].split(',')] data[int(line) - 1].nodes[idx]['atom'] = str(int(labels[0])) # @todo: this should be removed after. if data[int(line) - 1].graph['node_labels'] == []: for i, label in enumerate(labels): l_name = 'label_' + str(i) data[int(line) - 1].nodes[idx][l_name] = label data[int(line) - 1].graph['node_labels'].append(l_name) else: for i, l_name in enumerate(data[int(line) - 1].graph['node_labels']): data[int(line) - 1].nodes[idx][l_name] = labels[i] else: for i, line in enumerate(content_gi): data[int(line) - 1].add_node(i) # add edges for line in content_am: tmp = line.split(',') n1 = int(tmp[0]) - 1 n2 = int(tmp[1]) - 1 # ignore edge weight here. g = int(content_gi[n1]) - 1 data[g].add_edge(n1, n2) # add edge labels if 'fel' in locals(): content_el = open(fel).read().splitlines() for idx, line in enumerate(content_el): labels = [l.strip() for l in line.split(',')] n = [int(i) - 1 for i in content_am[idx].split(',')] g = int(content_gi[n[0]]) - 1 data[g].edges[n[0], n[1]]['bond_type'] = labels[0] # @todo: this should be removed after. if data[g].graph['edge_labels'] == []: for i, label in enumerate(labels): l_name = 'label_' + str(i) data[g].edges[n[0], n[1]][l_name] = label data[g].graph['edge_labels'].append(l_name) else: for i, l_name in enumerate(data[g].graph['edge_labels']): data[g].edges[n[0], n[1]][l_name] = labels[i] # add node attributes if 'fna' in locals(): content_na = open(fna).read().splitlines() for idx, line in enumerate(content_na): attrs = [a.strip() for a in line.split(',')] g = int(content_gi[idx]) - 1 data[g].nodes[idx]['attributes'] = attrs # @todo: this should be removed after. if data[g].graph['node_attrs'] == []: for i, attr in enumerate(attrs): a_name = 'attr_' + str(i) data[g].nodes[idx][a_name] = attr data[g].graph['node_attrs'].append(a_name) else: for i, a_name in enumerate(data[g].graph['node_attrs']): data[g].nodes[idx][a_name] = attrs[i] # add edge attributes if 'fea' in locals(): content_ea = open(fea).read().splitlines() for idx, line in enumerate(content_ea): attrs = [a.strip() for a in line.split(',')] n = [int(i) - 1 for i in content_am[idx].split(',')] g = int(content_gi[n[0]]) - 1 data[g].edges[n[0], n[1]]['attributes'] = attrs # @todo: this should be removed after. if data[g].graph['edge_attrs'] == []: for i, attr in enumerate(attrs): a_name = 'attr_' + str(i) data[g].edges[n[0], n[1]][a_name] = attr data[g].graph['edge_attrs'].append(a_name) else: for i, a_name in enumerate(data[g].graph['edge_attrs']): data[g].edges[n[0], n[1]][a_name] = attrs[i] # load y y = [int(i) for i in content_gl] return data, y
[docs]def loadDataset(filename, filename_y=None, extra_params=None): """Read graph data from filename and load them as NetworkX graphs. Parameters ---------- filename : string The name of the file from where the dataset is read. filename_y : string The name of file of the targets corresponding to graphs. extra_params : dict Extra parameters only designated to '.mat' format. Return ------ data : List of NetworkX graph. y : List Targets corresponding to graphs. Notes ----- This function supports following graph dataset formats: 'ds': load data from .ds file. See comments of function loadFromDS for a example. 'cxl': load data from Graph eXchange Language file (.cxl file). See `here <http://www.gupro.de/GXL/Introduction/background.html>`__ for detail. 'sdf': load data from structured data file (.sdf file). See `here <http://www.nonlinear.com/progenesis/sdf-studio/v0.9/faq/sdf-file-format-guidance.aspx>`__ for details. 'mat': Load graph data from a MATLAB (up to version 7.1) .mat file. See README in `downloadable file <http://mlcb.is.tuebingen.mpg.de/Mitarbeiter/Nino/WL/>`__ for details. 'txt': Load graph data from a special .txt file. See `here <https://ls11-www.cs.tu-dortmund.de/staff/morris/graphkerneldatasets>`__ for details. Note here filename is the name of either .txt file in the dataset directory. """ extension = splitext(filename)[1][1:] if extension == "ds": data, y = loadFromDS(filename, filename_y) elif extension == "cxl": import xml.etree.ElementTree as ET dirname_dataset = dirname(filename) tree = ET.parse(filename) root = tree.getroot() data = [] y = [] for graph in root.iter('graph'): mol_filename = graph.attrib['file'] mol_class = graph.attrib['class'] data.append(loadGXL(dirname_dataset + '/' + mol_filename)) y.append(mol_class) elif extension == 'xml': data, y = loadFromXML(filename, extra_params) elif extension == "sdf": # import numpy as np from tqdm import tqdm import sys data = loadSDF(filename) y_raw = open(filename_y).read().splitlines() y_raw.pop(0) tmp0 = [] tmp1 = [] for i in range(0, len(y_raw)): tmp = y_raw[i].split(',') tmp0.append(tmp[0]) tmp1.append(tmp[1].strip()) y = [] for i in tqdm(range(0, len(data)), desc='ajust data', file=sys.stdout): try: y.append(tmp1[tmp0.index(data[i].name)].strip()) except ValueError: # if data[i].name not in tmp0 data[i] = [] data = list(filter(lambda a: a != [], data)) elif extension == "mat": data, y = loadMAT(filename, extra_params) elif extension == 'txt': data, y = loadTXT(filename) # print(len(y)) # print(y) # print(data[0].nodes(data=True)) # print('----') # print(data[0].edges(data=True)) # for g in data: # print(g.nodes(data=True)) # print('----') # print(g.edges(data=True)) return data, y
[docs]def loadFromXML(filename, extra_params): import xml.etree.ElementTree as ET if extra_params: dirname_dataset = extra_params else: dirname_dataset = dirname(filename) tree = ET.parse(filename) root = tree.getroot() data = [] y = [] for graph in root.iter('graph'): mol_filename = graph.attrib['file'] mol_class = graph.attrib['class'] data.append(loadGXL(dirname_dataset + '/' + mol_filename)) y.append(mol_class) return data, y
[docs]def loadFromDS(filename, filename_y): """Load data from .ds file. Possible graph formats include: '.ct': see function loadCT for detail. '.gxl': see dunction loadGXL for detail. Note these graph formats are checked automatically by the extensions of graph files. """ dirname_dataset = dirname(filename) data = [] y = [] content = open(filename).read().splitlines() extension = splitext(content[0].split(' ')[0])[1][1:] if filename_y is None or filename_y == '': if extension == 'ct': for i in range(0, len(content)): tmp = content[i].split(' ') # remove the '#'s in file names data.append( loadCT(dirname_dataset + '/' + tmp[0].replace('#', '', 1))) y.append(float(tmp[1])) elif extension == 'gxl': for i in range(0, len(content)): tmp = content[i].split(' ') # remove the '#'s in file names data.append( loadGXL(dirname_dataset + '/' + tmp[0].replace('#', '', 1))) y.append(float(tmp[1])) else: # y in a seperate file if extension == 'ct': for i in range(0, len(content)): tmp = content[i] # remove the '#'s in file names data.append( loadCT(dirname_dataset + '/' + tmp.replace('#', '', 1))) elif extension == 'gxl': for i in range(0, len(content)): tmp = content[i] # remove the '#'s in file names data.append( loadGXL(dirname_dataset + '/' + tmp.replace('#', '', 1))) content_y = open(filename_y).read().splitlines() # assume entries in filename and filename_y have the same order. for item in content_y: tmp = item.split(' ') # assume the 3rd entry in a line is y (for Alkane dataset) y.append(float(tmp[2])) return data, y
[docs]def saveDataset(Gn, y, gformat='gxl', group=None, filename='gfile', xparams=None): """Save list of graphs. """ import os dirname_ds = os.path.dirname(filename) if dirname_ds != '': dirname_ds += '/' os.makedirs(dirname_ds, exist_ok=True) if xparams is not None and 'graph_dir' in xparams: graph_dir = xparams['graph_dir'] + '/' os.makedirs(graph_dir, exist_ok=True) else: graph_dir = dirname_ds if group == 'xml' and gformat == 'gxl': kwargs = {'method': xparams['method']} if xparams is not None else {} with open(filename + '.xml', 'w') as fgroup: fgroup.write("<?xml version=\"1.0\"?>") fgroup.write("\n<!DOCTYPE GraphCollection SYSTEM \"http://www.inf.unibz.it/~blumenthal/dtd/GraphCollection.dtd\">") fgroup.write("\n<GraphCollection>") for idx, g in enumerate(Gn): fname_tmp = "graph" + str(idx) + ".gxl" saveGXL(g, graph_dir + fname_tmp, **kwargs) fgroup.write("\n\t<graph file=\"" + fname_tmp + "\" class=\"" + str(y[idx]) + "\"/>") fgroup.write("\n</GraphCollection>") fgroup.close()
if __name__ == '__main__': # ### Load dataset from .ds file. # # .ct files. # ds = {'name': 'Alkane', 'dataset': '../../datasets/Alkane/dataset.ds', # 'dataset_y': '../../datasets/Alkane/dataset_boiling_point_names.txt'} # Gn, y = loadDataset(ds['dataset'], filename_y=ds['dataset_y']) ## ds = {'name': 'Acyclic', 'dataset': '../../datasets/acyclic/dataset_bps.ds'} # node symb ## Gn, y = loadDataset(ds['dataset']) ## ds = {'name': 'MAO', 'dataset': '../../datasets/MAO/dataset.ds'} # node/edge symb ## Gn, y = loadDataset(ds['dataset']) ## ds = {'name': 'PAH', 'dataset': '../../datasets/PAH/dataset.ds'} # unlabeled ## Gn, y = loadDataset(ds['dataset']) # print(Gn[1].nodes(data=True)) # print(Gn[1].edges(data=True)) # print(y[1]) # # .gxl file. # ds = {'name': 'monoterpenoides', # 'dataset': '../../datasets/monoterpenoides/dataset_10+.ds'} # node/edge symb # Gn, y = loadDataset(ds['dataset']) # print(Gn[1].nodes(data=True)) # print(Gn[1].edges(data=True)) # print(y[1]) # ### Convert graph from one format to another. # # .gxl file. # import networkx as nx # ds = {'name': 'monoterpenoides', # 'dataset': '../../datasets/monoterpenoides/dataset_10+.ds'} # node/edge symb # Gn, y = loadDataset(ds['dataset']) # y = [int(i) for i in y] # print(Gn[1].nodes(data=True)) # print(Gn[1].edges(data=True)) # print(y[1]) # # Convert a graph to the proper NetworkX format that can be recognized by library gedlib. # Gn_new = [] # for G in Gn: # G_new = nx.Graph() # for nd, attrs in G.nodes(data=True): # G_new.add_node(str(nd), chem=attrs['atom']) # for nd1, nd2, attrs in G.edges(data=True): # G_new.add_edge(str(nd1), str(nd2), valence=attrs['bond_type']) ## G_new.add_edge(str(nd1), str(nd2)) # Gn_new.append(G_new) # print(Gn_new[1].nodes(data=True)) # print(Gn_new[1].edges(data=True)) # print(Gn_new[1]) # filename = '/media/ljia/DATA/research-repo/codes/others/gedlib/tests_linlin/generated_datsets/monoterpenoides/gxl/monoterpenoides' # xparams = {'method': 'gedlib'} # saveDataset(Gn, y, gformat='gxl', group='xml', filename=filename, xparams=xparams) # save dataset. # ds = {'name': 'MUTAG', 'dataset': '../../datasets/MUTAG/MUTAG.mat', # 'extra_params': {'am_sp_al_nl_el': [0, 0, 3, 1, 2]}} # node/edge symb # Gn, y = loadDataset(ds['dataset'], extra_params=ds['extra_params']) # saveDataset(Gn, y, group='xml', filename='temp/temp') # test - new way to add labels and attributes. # dataset = '../../datasets/SYNTHETICnew/SYNTHETICnew_A.txt' # dataset = '../../datasets/Fingerprint/Fingerprint_A.txt' # dataset = '../../datasets/Letter-med/Letter-med_A.txt' # dataset = '../../datasets/AIDS/AIDS_A.txt' # dataset = '../../datasets/ENZYMES_txt/ENZYMES_A_sparse.txt' # Gn, y_all = loadDataset(dataset) pass